ON ROULETTE WHICH ALLOWS STAKES ON INFINITELY MANY HOLES

BY

DAVID GILAT[†] AND ERNST-AUGUST WEISS, JR.[#]

ABSTRACT

It is shown that if a gamble γ stakes positive amounts on infinitely many holes of a subfair roulette-table, then for every $\varepsilon > 0$, there is a gamble γ^* with positive stakes on only a finite number of holes, such that $\gamma Q \leq \gamma^*Q + \varepsilon$ for every nondecreasing function Q bounded above by 1 on $[0, \infty)$. It is deduced from this proposition that a gambler who wishes to maximize his chances to increase his current fortune by a specified amount, has no advantage in ever placing positive stakes on more than a finite number of holes on any single spin. This result settles a question left open in [1].

A roulette-table, as in [1], is determined by a family of pairs of numbers (w_a, r_a) with $0 < w_{\alpha}, r_{\alpha} < 1$, where α ranges over some non-empty index-set, conveniently identified with the set of *holes* on the roulette. In contrast to the roulettetable $\hat{\Gamma}$ of [1], which allows only gambles that stake positive amounts on a finite number of holes, the roulette-table, $\tilde{\Gamma}$, considered in this note, makes available at f, all gambles γ , for which the new fortune, f_{β} , obtained from f by using γ , is nonnegative for every hole β , and for which $W(\gamma) = \sum_{\alpha} w_{\alpha} \leq 1$, where, as in [1], Σ_{γ} means summation over the set of holes on which γ stakes a positive amount. (Note that $W(\gamma) \le 1$ entails that γ stakes positive amounts on at most a countable infinity of holes; observe as well that each such γ is available in $\tilde{\Gamma}$ at some fortune f.) $\hat{\Gamma}$ can now be viewed as the restriction of $\tilde{\Gamma}$ to gambles with positive stakes on only a finite number of holes. As in [1], let Γ be the further restriction of $\tilde{\Gamma}$ to gambles with a positive stake on at most one hole. Let \tilde{U} , \tilde{U} , and U be the respective casino functions of $\tilde{\Gamma}$, $\hat{\Gamma}$ and Γ . Since $\Gamma \subset \hat{\Gamma} \subset \tilde{\Gamma}$, plainly $U \leq \hat{U} \leq \tilde{U}$.

Dubins [1] has proved

^{*} This author was on leave from Tel Aviv University when this note was prepared. He wishes to acknowledge the hospitality of the School of Statistics at the University of Minnesota.

^{*} This author is thankful to the Deutsche Forscfiungsgemeinschaft for its financial support.

Received December 3, 1975

$$
(1) \hspace{3.1em} \hat{U} = U,
$$

and has left unanswered the question as to whether also $\tilde{U} = U$. It is the purpose of this note to settle this question in the affirmative. We do so by proving:

THEOREM. $\tilde{U}=\hat{U}$.

Thus a gambler who wishes to maximize his changes of getting richer by a specified amount through playing at the roulette-table F, may as well restrict himself to betting on a finite number of holes — hence, by (1), on only one hole --on any particular spin of the roulette.

For the rest of this note assume

(2)
$$
w_{\alpha} \leq r_{\alpha} \quad \text{for every hole} \quad \alpha,
$$

for otherwise Γ , a fortiori $\hat{\Gamma}$ and $\tilde{\Gamma}$, is superfair, so that *U*, a fortiori \hat{U} and \tilde{U} , is the indicator-function of the positive half line $(0, \infty)$, as is established in the general theory of superfair casinos developed in $[3, ch. 4]$.

The proof of the Theorem in the subfair case (2), though admittedly much simpler, follows the same logical pattern as that of [1, th. 1]. A gamble γ that stakes positive amounts on a finite number of holes is *of finite order.*

PROPOSITION. Let $0 \le f \le 1$, let γ be available in $\tilde{\Gamma}$ at f. Then for every $\varepsilon > 0$, *there is a* γ^* *of finite order available at f such that*

$$
\gamma Q \leq \gamma^* Q + \varepsilon
$$

for all nondecreasing functions Q bounded above by 1 on $[0, \infty)$ *.*

That the Theorem follows from the Proposition is easily seen, much in the same manner as theorem 1 in [1] is argued from Lemma 1 there. For putting, as one may, \hat{U} for Q in (3), then applying the fact that \hat{U} is excessive for $\hat{\Gamma}$ — as, by [3, th. 2.14.1], is the U of every house for that house $-$ one gets

(4)
$$
\gamma \hat{U} \leq \gamma^* \hat{U} + \varepsilon \leq \hat{U}(f) + \varepsilon,
$$

and thus

$$
\gamma \hat{U} \leq \hat{U}(f) + \varepsilon,
$$

for every f and every γ available in $\tilde{\Gamma}$ at f. Since ε in (5) is arbitrary, it means that \hat{U} is excessive for $\hat{\Gamma}$. That $\hat{U} = \hat{U}$ now follows from the fundamental theorem [3, th. 2.12.11.

Turn now to the proof of the proposition. As in [1], let γ be given by the system of stakes $\{s_{\alpha}, r_{\alpha}\}\$. Assume first the mildly restrictive condition

(6)
$$
f_0 = f - \sum_{\gamma} S_{\alpha} r_{\alpha} \geq 0,
$$

which is always satisfied for γ with $W(\gamma) < 1$, because otherwise γ would not be available at f. The set $\{\alpha: s_{\alpha} > 0\}$, that is, the set of holes on which γ places positive stakes, may conveniently be called *the set of holes used* by 7. Since $W(\gamma) \leq 1$, the set of holes used by γ can be partitioned into a *finite* set A and a residual (possibly empty, if γ is of finite order to begin with, in which case take $\gamma^* = \gamma$) set B with

(7) Y Bwo <

Define γ^* by the system of stakes $\{s^*_{a}r_{\alpha}\}\)$, where $s^*_{\alpha}=0$ for holes α for which $s_{\alpha} = 0$ and also for holes α in B; on each of the (finite number of) holes α in A, let $s_{\alpha}^* = s_{\alpha}$. Plainly, γ^* is of finite order and is available at f. Since $s_{\alpha} \geq s_{\alpha}^*$ for every hole α ,

$$
(8) \t\t f_0 \leq f_0^*,
$$

where f_0^* is for γ^* , like f_0 for γ , the value of the new fortune reached from f, when a hole α with $s^* = 0$ comes up. Also, since the set of holes used by γ^* is a subset of those used by γ ,

$$
(9) \t1-W(\gamma) \leq 1-W(\gamma^*).
$$

Moreover, for each hole β in A,

$$
(10) \t\t\t f_{\beta} \leq f_{\beta}^*,
$$

because as in [1], $f_{\beta} = f_0 + s_{\beta}$ and $f_{\beta}^* = f_0^* + s_{\beta}^*$, while $f_0 \leq f_0^*$ by (8), whereas for holes β in A, $s_{\beta}^* = s_{\beta}$ by definition of γ^* . It is only for holes in B that f_{β} may exceed f^*_{β} , but since by (7) the *total size* of these holes is less than ε , their contribution to γQ , Q being bounded above by 1, cannot exceed ε . It is now clear that, Q being nondecreasing, (7) , (8) , (9) and (10) yield the desired result (3). To conclude the proof of the Proposition, only the special case of γ for which (6) is violated, remains to be settled. In this case, we first replace γ by an available γ' which satisfies (6) and *dominates* γ , then proceed to obtain γ^* from γ' as before. So suppose that γ is such that $f_0 < 0$, then $W(\gamma) = 1$, because otherwise γ would not be available. The subfairness condition (2) therefore implies

$$
\sum_{\mathbf{r}} r_{\alpha} \geq 1.
$$

Since the availability of γ at f forces $f_a = s_a + f_0$ to be nonnegative for every hole β used by γ , we may define γ' to be given by the system of stakes $\{s'_a r_a\}$, where $s'_\text{a} = s_\text{a} + f_0$ for α with $s_\alpha > 0$, and $s'_\text{a} = 0$ otherwise. A straightforward computation, using (11), then shows that $f'_0 \ge 0$ and $f'_0 \ge f_\beta$ for every hole β . Thus γ' so defined is an available gamble at f which dominates γ . This establishes the **Proposition and thereby completes the proof of the Theorem.**

REFERENCES

1. L. E. Dubins, *On roulette when the holes are of various sizes,* **Israel J. Math.** 11 (1972), 153-158.

2. L. E. Dubins, *A simpler proof of Smith's Roulette Theorem,* **Ann. Math. Statist.** 39 (1967), 390-393.

3. L. E. **Dubins and** L. J. Savage, *How to Gamble if You Must,* McGraw-Hill, New York, 1965.

4. G. Smith, *Optimal strategy at roulette,* **Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,** \$ (1968), 91-100.

DEPARTMENT OF THEORETICAL STATISTICS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455, USA

AND

MATHEMATISCHES INSTITUT DER UNIVERSITÄT ERLANGEN-NÜRNBERG D 852 ERLANGEN BISMARCKSTR. 1 1/2 FEDERAL REPUBLIC OF GERMANY