ON ROULETTE WHICH ALLOWS STAKES ON INFINITELY MANY HOLES

ΒY

DAVID GILAT' AND ERNST-AUGUST WEISS, JR.*

ABSTRACT

It is shown that if a gamble γ stakes positive amounts on infinitely many holes of a subfair roulette-table, then for every $\varepsilon > 0$, there is a gamble γ^* with positive stakes on only a finite number of holes, such that $\gamma Q \leq \gamma^* Q + \varepsilon$ for every nondecreasing function Q bounded above by 1 on $[0, \infty)$. It is deduced from this proposition that a gambler who wishes to maximize his chances to increase his current fortune by a specified amount, has no advantage in ever placing positive stakes on more than a finite number of holes on any single spin. This result settles a question left open in [1].

A roulette-table, as in [1], is determined by a family of pairs of numbers (w_{α}, r_{α}) with $0 < w_{\alpha}, r_{\alpha} < 1$, where α ranges over some non-empty index-set, conveniently identified with the set of *holes* on the roulette. In contrast to the roulettetable $\hat{\Gamma}$ of [1], which allows only gambles that stake positive amounts on a finite number of holes, the roulette-table, $\tilde{\Gamma}$, considered in this note, makes available at f, all gambles γ , for which the new fortune, f_{β} , obtained from f by using γ , is nonnegative for every hole β , and for which $W(\gamma) \equiv \sum_{\gamma} w_{\alpha} \leq 1$, where, as in [1], \sum_{γ} means summation over the set of holes on which γ stakes a positive amount. (Note that $W(\gamma) \leq 1$ entails that γ stakes positive amounts on at most a countable infinity of holes; observe as well that each such γ is available in $\tilde{\Gamma}$ at some fortune f.) $\hat{\Gamma}$ can now be viewed as the restriction of $\tilde{\Gamma}$ to gambles with positive stakes on only a finite number of holes. As in [1], let Γ be the further restriction of $\tilde{\Gamma}$ to gambles with a positive stake on at most one hole. Let \tilde{U} , \hat{U} , and U be the respective casino functions of $\tilde{\Gamma}$, $\hat{\Gamma}$ and Γ . Since $\Gamma \subset \hat{\Gamma} \subset \tilde{\Gamma}$, plainly $U \leq \hat{U} \leq \tilde{U}$.

Dubins [1] has proved

⁺ This author was on leave from Tel Aviv University when this note was prepared. He wishes to acknowledge the hospitality of the School of Statistics at the University of Minnesota.

[±] This author is thankful to the Deutsche Forschungsgemeinschaft for its financial support. Received December 3, 1975

$$\hat{U} = U,$$

and has left unanswered the question as to whether also $\tilde{U} = U$. It is the purpose of this note to settle this question in the affirmative. We do so by proving:

Theorem. $\tilde{U} = \hat{U}$.

Thus a gambler who wishes to maximize his changes of getting richer by a specified amount through playing at the roulette-table $\tilde{\Gamma}$, may as well restrict himself to betting on a finite number of holes — hence, by (1), on only one hole — on any particular spin of the roulette.

For the rest of this note assume

(2)
$$w_{\alpha} \leq r_{\alpha}$$
 for every hole α ,

for otherwise Γ , a fortiori $\hat{\Gamma}$ and $\tilde{\Gamma}$, is superfair, so that U, a fortiori \hat{U} and \tilde{U} , is the indicator-function of the positive half line $(0, \infty)$, as is established in the general theory of superfair casinos developed in [3, ch. 4].

The proof of the Theorem in the subfair case (2), though admittedly much simpler, follows the same logical pattern as that of [1, th. 1]. A gamble γ that stakes positive amounts on a finite number of holes is of finite order.

PROPOSITION. Let $0 \leq f \leq 1$, let γ be available in $\tilde{\Gamma}$ at f. Then for every $\varepsilon > 0$, there is a γ^* of finite order available at f such that

(3)
$$\gamma Q \leq \gamma^* Q + \varepsilon$$

for all nondecreasing functions Q bounded above by 1 on $[0,\infty)$.

That the Theorem follows from the Proposition is easily seen, much in the same manner as theorem 1 in [1] is argued from Lemma 1 there. For putting, as one may, \hat{U} for Q in (3), then applying the fact that \hat{U} is excessive for $\hat{\Gamma}$ — as, by [3, th. 2.14.1], is the U of every house for that house — one gets

(4)
$$\gamma \hat{U} \leq \gamma^* \hat{U} + \varepsilon \leq \hat{U}(f) + \varepsilon$$
,

and thus

(5)
$$\gamma \hat{U} \leq \hat{U}(f) + \varepsilon$$
,

for every f and every γ available in $\tilde{\Gamma}$ at f. Since ε in (5) is arbitrary, it means that \hat{U} is excessive for $\tilde{\Gamma}$. That $\tilde{U} = \hat{U}$ now follows from the fundamental theorem [3, th. 2.12.1].

Turn now to the proof of the proposition. As in [1], let γ be given by the system of stakes $\{s_{\alpha}, r_{\alpha}\}$. Assume first the mildly restrictive condition

(6)
$$f_0 = f - \Sigma_{\gamma} s_{\alpha} r_{\alpha} \ge 0 ,$$

which is always satisfied for γ with $W(\gamma) < 1$, because otherwise γ would not be available at f. The set $\{\alpha : s_{\alpha} > 0\}$, that is, the set of holes on which γ places positive stakes, may conveniently be called *the set of holes used by* γ . Since $W(\gamma) \leq 1$, the set of holes used by γ can be partitioned into a *finite* set A and a residual (possibly empty, if γ is of finite order to begin with, in which case take $\gamma^* = \gamma$) set B with

(7)
$$\sum_{\alpha \in B} w_{\alpha} \leq \varepsilon$$
.

Define γ^* by the system of stakes $\{s_{\alpha}^*r_{\alpha}\}$, where $s_{\alpha}^* = 0$ for holes α for which $s_{\alpha} = 0$ and also for holes α in B; on each of the (finite number of) holes α in A, let $s_{\alpha}^* = s_{\alpha}$. Plainly, γ^* is of finite order and is available at f. Since $s_{\alpha} \ge s_{\alpha}^*$ for every hole α ,

$$f_0 \leq f_0^*,$$

where f_0^* is for γ^* , like f_0 for γ , the value of the new fortune reached from f, when a hole α with $s_{\alpha}^* = 0$ comes up. Also, since the set of holes used by γ^* is a subset of those used by γ ,

(9)
$$1-W(\gamma) \leq 1-W(\gamma^*).$$

Moreover, for each hole β in A,

$$(10) f_{\beta} \leq f_{\beta}^*,$$

because as in [1], $f_{\beta} = f_0 + s_{\beta}$ and $f_{\beta}^* = f_0^* + s_{\beta}^*$, while $f_0 \leq f_0^*$ by (8), whereas for holes β in A, $s_{\beta}^* = s_{\beta}$ by definition of γ^* . It is only for holes in B that f_{β} may exceed f_{β}^* , but since by (7) the *total size* of these holes is less than ε , their contribution to γQ , Q being bounded above by 1, cannot exceed ε . It is now clear that, Q being nondecreasing, (7), (8), (9) and (10) yield the desired result (3). To conclude the proof of the Proposition, only the special case of γ for which (6) is violated, remains to be settled. In this case, we first replace γ by an available γ' which satisfies (6) and *dominates* γ , then proceed to obtain γ^* from γ' as before. So suppose that γ is such that $f_0 < 0$, then $W(\gamma) = 1$, because otherwise γ would not be available. The subfairness condition (2) therefore implies

(11)
$$\sum_{\gamma} r_{\alpha} \ge 1$$

Since the availability of γ at f forces $f_{\beta} = s_{\beta} + f_0$ to be nonnegative for every hole β used by γ , we may define γ' to be given by the system of stakes $\{s'_{\alpha} r_{\alpha}\}$, where $s'_{\alpha} = s_{\alpha} + f_0$ for α with $s_{\alpha} > 0$, and $s'_{\alpha} = 0$ otherwise. A straightforward computation, using (11), then shows that $f'_0 \ge 0$ and $f'_{\beta} \ge f_{\beta}$ for every hole β . Thus γ' so defined is an available gamble at f which dominates γ . This establishes the Proposition and thereby completes the proof of the Theorem.

REFERENCES

1. L. E. Dubins, On roulette when the holes are of various sizes, Israel J. Math. 11 (1972), 153-158.

2. L. E. Dubins, A simpler proof of Smith's Roulette Theorem, Ann. Math. Statist. 39 (1967), 390-393.

3. L. E. Dubins and L. J. Savage, How to Gamble if You Must, McGraw-Hill, New York, 1965.

4. G. Smith, Optimal strategy at roulette, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 8 (1968), 91-100.

DEPARTMENT OF THEORETICAL STATISTICS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455, USA

AND

MATHEMATISCHES INSTITUT DER UNIVERSITÄT ERLANGEN-NÜRNBERG D 852 Erlangen Bismarckstr. 1 1/2 Federal Republic of Germany